shadow_tr

Faculty

faculty-nandini-vasudevan

Nandini Vasudevan, Ph.D.

Assistant Professor of Cell and Molecular Biology


Email: nandini@tulane.edu
Phone: (504) 865-5546
Fax: (504) 865-6785

Ph.D. - Indian Institute of Science, 1999

Department of Cell and Molecular Biology
Tulane University
1001 Stern Hall
6400 Freret Street
New Orleans, LA 70118

Lab Wesbite: http://tulane.edu/sse/cell/faculty/nandini.cfm

Research Interests

Research in my laboratory focuses on how small molecules such as hormones signal in neurons and glia to result in behavioral outcomes in the whole animal.   In particular, we are interested in how estrogens signal to influence social behaviors.  Estrogens signal in two major mechanistic ways: a) classical genomic signaling resulting in regulation of genes and b) rapid, cell membrane-initiated signaling leading to kinase activation and calcium  influx.  How do non-genomic, unconventional modes of signaling in cells integrate with classical modes of estrogen signaling?  What genes in the brain and what social behaviors are regulated by non-genomic non-classical pathways?  Using the mouse as a model, we seek to understand the physiological significance of such integration in behavior  and the mechanisms by which such integration takes place.  A second project involves understanding the role of a putative membrane estrogen receptor, the GPR30, in estrogen driven behaviors.  Both these projects use a variety of molecular biological techniques, neuromorphological techniques, cell cultures as well as well as behavior in mice.  A third project in the laboratory looks at the action of thyroid hormones on the brain.  Currently, we use mouse models with either thyroid hormone receptor loss or abnormal levels of thyroid hormones to probe the involvement of thyroid hormone in anxiety related syndromes, using both mice behavior and gene expression assays.  Research in the lab is funded by NSF and NIH.

Representative Publications

Vasudevan, N., Kow, L. M., and Pfaff, D. W. (2001).  Early membrane estrogenic effects required for full expression of slower genomic actions in a nerve cell line.  Proc Natl Acad Sci U S A. 98(21), 12267-12271.

Zhao, X., Lorenc, H., Stephenson, H., Wang, J., Witherspoon, D., Katzenellenbogen, B., Pfaff, D. W., and Vasudevan, N. (2005).  Thyroid hormone can increase estrogen-mediated transcription from a consensus estrogen response element in neuroblastoma cells.  Proc Natl Acad Sci U S A 102:4890-4895.

Zhao, X., MacBride, M. M., Pfaff, D. W., Peterson, B. R., and Vasudevan, N. (2005).  Calcium flux in neuroblastoma cells is a coupling mechanism between non-genomic and genomic modes of estrogens.  Neuroendocrinology 81:174-182.

Vasudevan, N., and Pfaff, D.W (2007). Membrane initiated actions of estrogens in Neuroendocrinology: Emerging Principles. Endocrine Reviews 28 (1):1-19 (Peer-reviewed).

Vasudevan, N and Pfaff, DW (2008).  Non genomic actions of estrogens and their interaction with genomic actions in the brain.  Frontiers in Neuroendocrinolgy 29 (2): 238-57 .

Vasudevan N, Morgan M, Pfaff D, Ogawa S. Distinct behavioral phenotypes in male mice lacking the thyroid hormone receptor alpha1 or beta isoforms. Horm Behav 2013;63:742-751.

Clark, S., Rainville, J., Zhao, X, Katzenellenbogen, B., Pfaff, D.W and Nandini Vasudevan.  Estrogen receptor-mediated transcription involves the activation of multiple kinase pathways in neuroblastoma cells.  Journal of Steroid Biochemistry and Molecular Biology, in press.

Divya Anchan, Sara Clark, Kevin Pollard and Nandini Vasudevan.  GPR30 activation decreases anxiety in the open field test but not in the elevated plus maze test in female mice.  Brain and Behavior, in press.

B. Reviews

Vasudevan, N., Ogawa, S., and Pfaff, D. W (2002). Multiple Genes and Isoforms for Estrogen Receptors and Thyroid Hormone Receptors: Patterns of molecular interactions and functional influences in neuroendocrine systems. Physiological Reviews 82(4), 923-944 (Submitted review).

Vasudevan N., Pfaff D.W (2005). Molecular mechanisms of crosstalk between thyroid hormones and estrogens. Current Opinion in Endocrinology and Diabetes 12:381-388 (Invited Review).

Vasudevan, N., and Pfaff, D.W (2007). Membrane initiated actions of estrogens in Neuroendocrinology: Emerging Principles. Endocrine Reviews 28 (1):1-19.

Vasudevan, N., and Pfaff, DW (2008). Non genomic actions of estrogens and their interaction with genomic actions in the brain. Frontiers in Neuroendocrinolgy 29 (2): 238-57.

Teaching

1. Cell/NSCI 4200/6200: General Endocrinology, Spring 2010-Spring 2013.  Sole instructor.

2. NSCI/CELL 6150/6155: Methods in Neuroscience Lecture and Lab, Fall 2010-Fall 2013.

3. Independent study courses CELL 4910/4920: From Spring 2010-present.This includes a mini-course, once a year, consisting of 8-10 hours lectures to the undergraduate researcher.



School of Science and Engineering, 201 Lindy Boggs Center, New Orleans, LA 70118 504-865-5764 sse@tulane.edu