shadow_tr

Faculty

russell-schmehl

Russell Schmehl

Professor
Ph.D., 1980, North Carolina


Office: 5059 Percival Stern Building
Email: russ@tulane.edu
Phone: (504) 862-3566
Website:  Dr. Schmehl's Group Page

Selected Publications

Discipline

Photochemistry, Materials, Transition Metal Chemistry

Areas of current interest

Light Harvesting
Chemists can play a significant role in the search for new sources of renewable energy to help meet future world energy needs. Of all the prospective renewable energy sources, solar offers the greatest potential return (as much as ten times the world energy needs expected at the end of this century). One area of solar energy related research for chemists is the study of photochemical reactions of molecules that absorb visible light.

Our research includes considerable organic and inorganic synthesis. Our recent efforts have focused on preparing clusters of visible light absorbing chromophores that may be used to "harvest" light. Such light harvesting arrays can be used to channel energy into electrochemical cells designed to convert light to electrical energy (photoelectrochemical cells). The types of chromophores we have examined include porphyrins , phthalocyanines and a variety of transition metal complexes. Through a combination of synthetic and laser spectroscopic investigations, our group studies the factors that influence the reactivity and stability of these classes of visible chromophores.

Photocatalysts
Another area of research in our group, related to solar energy conversion to chemical energy, is the study of what is referred to as one photon-two electron reactions. Using transition metal complexes that undergo two electron redox processes (i.e. Pt(II) to Pt(IV)), we are attempting to develop photochemical systems that can undergo redox cycling to serve as photocatalysts for the production of useful reagents.

Materials
Many of the N-heterocyclic ligands we prepare for light harvesting systems are strongly luminescent and are related to materials used for the development of organic light emitting diodes (OLEDs). The ligands have emission that can be tuned to span the visible spectrum.

We are currently exploring the luminescence behavior of these complexes in solution and on surfaces. By gaining control of surface morphology via various surface deposition techniques, we hope to prepare highly luminescent surface bound chromophores that can be used in OLEDs or sensing applications. We study surface marpology using scanning electron microscopy (SEM) and (TEM).


School of Science and Engineering, 201 Lindy Boggs Center, New Orleans, LA 70118 504-865-5764 sse@tulane.edu